\(\int \frac {\sec (c+d x) (A+C \sec ^2(c+d x))}{(b \sec (c+d x))^{4/3}} \, dx\) [17]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 92 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=-\frac {3 (2 A-C) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},\cos ^2(c+d x)\right ) \sin (c+d x)}{8 d (b \sec (c+d x))^{4/3} \sqrt {\sin ^2(c+d x)}}+\frac {3 C \tan (c+d x)}{2 b d \sqrt [3]{b \sec (c+d x)}} \]

[Out]

-3/8*(2*A-C)*hypergeom([1/2, 2/3],[5/3],cos(d*x+c)^2)*sin(d*x+c)/d/(b*sec(d*x+c))^(4/3)/(sin(d*x+c)^2)^(1/2)+3
/2*C*tan(d*x+c)/b/d/(b*sec(d*x+c))^(1/3)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {16, 4131, 3857, 2722} \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\frac {3 C \tan (c+d x)}{2 b d \sqrt [3]{b \sec (c+d x)}}-\frac {3 (2 A-C) \sin (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},\cos ^2(c+d x)\right )}{8 d \sqrt {\sin ^2(c+d x)} (b \sec (c+d x))^{4/3}} \]

[In]

Int[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(b*Sec[c + d*x])^(4/3),x]

[Out]

(-3*(2*A - C)*Hypergeometric2F1[1/2, 2/3, 5/3, Cos[c + d*x]^2]*Sin[c + d*x])/(8*d*(b*Sec[c + d*x])^(4/3)*Sqrt[
Sin[c + d*x]^2]) + (3*C*Tan[c + d*x])/(2*b*d*(b*Sec[c + d*x])^(1/3))

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2722

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 3857

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{b \sec (c+d x)}} \, dx}{b} \\ & = \frac {3 C \tan (c+d x)}{2 b d \sqrt [3]{b \sec (c+d x)}}+\frac {(2 A-C) \int \frac {1}{\sqrt [3]{b \sec (c+d x)}} \, dx}{2 b} \\ & = \frac {3 C \tan (c+d x)}{2 b d \sqrt [3]{b \sec (c+d x)}}+\frac {\left ((2 A-C) \left (\frac {\cos (c+d x)}{b}\right )^{2/3} (b \sec (c+d x))^{2/3}\right ) \int \sqrt [3]{\frac {\cos (c+d x)}{b}} \, dx}{2 b} \\ & = -\frac {3 (2 A-C) \cos ^2(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},\cos ^2(c+d x)\right ) (b \sec (c+d x))^{2/3} \sin (c+d x)}{8 b^2 d \sqrt {\sin ^2(c+d x)}}+\frac {3 C \tan (c+d x)}{2 b d \sqrt [3]{b \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.86 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\frac {3 C \tan (c+d x)-3 (2 A-C) \cot (c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {1}{6},\frac {1}{2},\frac {5}{6},\sec ^2(c+d x)\right ) \sqrt {-\tan ^2(c+d x)}}{2 b d \sqrt [3]{b \sec (c+d x)}} \]

[In]

Integrate[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(b*Sec[c + d*x])^(4/3),x]

[Out]

(3*C*Tan[c + d*x] - 3*(2*A - C)*Cot[c + d*x]*Hypergeometric2F1[-1/6, 1/2, 5/6, Sec[c + d*x]^2]*Sqrt[-Tan[c + d
*x]^2])/(2*b*d*(b*Sec[c + d*x])^(1/3))

Maple [F]

\[\int \frac {\sec \left (d x +c \right ) \left (A +C \sec \left (d x +c \right )^{2}\right )}{\left (b \sec \left (d x +c \right )\right )^{\frac {4}{3}}}d x\]

[In]

int(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x)

[Out]

int(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x)

Fricas [F]

\[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac {4}{3}}} \,d x } \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c))^(2/3)/(b^2*sec(d*x + c)), x)

Sympy [F]

\[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (b \sec {\left (c + d x \right )}\right )^{\frac {4}{3}}}\, dx \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(4/3),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)/(b*sec(c + d*x))**(4/3), x)

Maxima [F]

\[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac {4}{3}}} \,d x } \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)/(b*sec(d*x + c))^(4/3), x)

Giac [F]

\[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )}{\left (b \sec \left (d x + c\right )\right )^{\frac {4}{3}}} \,d x } \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)/(b*sec(d*x + c))^(4/3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\cos \left (c+d\,x\right )\,{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{4/3}} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(b/cos(c + d*x))^(4/3)),x)

[Out]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(b/cos(c + d*x))^(4/3)), x)